Quantum Reed-Muller Codes
نویسندگان
چکیده
This paper presents a set of quantum Reed-Muller codes which are typically 100 times more effective than existing quantum Reed-Muller codes. The code parameters are [[n, k, d]] = [[2, ∑r l=0 C(m, l) − ∑m−r−1 l=0 C(m, l), 2 m−r ]] where 2r + 1 > m > r.
منابع مشابه
Quantum Convolutional Codes Derived From Reed-Solomon and Reed-Muller Codes
Convolutional stabilizer codes promise to make quantum communication more reliable with attractive online encoding and decoding algorithms. This paper introduces a new approach to convolutional stabilizer codes based on direct limit constructions. Two families of quantum convolutional codes are derived from generalized Reed-Solomon codes and from ReedMuller codes. A Singleton bound for pure con...
متن کاملQuantum Error Correction Codes
This report contains the comprehensive explanation of some most important quantum error correction codes. After the brief corroboration of the quantum mechanical principles that govern any quantum mechanical process, we introduce stabilizer formalism and stabilizer codes for quantum error correction (QEC). As an interesting derivative from classical counterpart we also present Quantum Reed Mull...
متن کاملAsymmetric Quantum Codes: New Codes from Old
In this paper we extend to asymmetric quantum error-correcting codes (AQECC) the construction methods, namely: puncturing, extending, expanding, direct sum and the (u|u + v) construction. By applying these methods, several families of asymmetric quantum codes can be constructed. Consequently, as an example of application of quantum code expansion developed here, new families of asymmetric quant...
متن کاملAlgebraic techniques in designing quantum synchronizable codes
Quantum synchronizable codes are quantum error-correcting codes that can correct the effects of quantum noise as well as block synchronization errors. We improve the previously known general framework for designing quantum synchronizable codes through more extensive use of the theory of finite fields. This makes it possible to widen the range of tolerable magnitude of block synchronization erro...
متن کاملGrassmannian Packings From Operator Reed-Muller Codes
This paper introduces multidimensional generalizations of binary Reed–Muller codes where the codewords are projection operators, and the corresponding subspaces are widely separated with respect to the chordal distance on Grassmannian space. Parameters of these Grassmannian packings are derived and a low complexity decoding algorithm is developed by modifying standard decoding algorithms for bi...
متن کامل